![]() | Машинное обучение. Основы, алгоритмы и практика примененияДжереми Уатт, Реза Борхани, Аггелос Катсаггелос
Представлены фундаментальные знания и практические инструменты в области машинного обучения, в том числе более 100 углубленных упражнений на языке Python. Дано введение в машинное обучение и математическую оптимизацию, включая методы первого и второго порядков, градиентного спуска и Ньютона. Приведено полное описание обучения с учителем, включая линейную регрессию, двухклассовую и многоклассовую классификацию, а также обучение без учителя и фундаментальные методы генерации признаков. Дано введение в нелинейное обучение с учителем и без. Обсуждается тема автоматизированного отбора подходящих нелинейных моделей, включая перекрестную валидацию, бустирование, регуляризацию и ансамблирование. Рассмотрены фиксированно-контурные ядра, нейронные сети, деревья и другие универсальные аппроксиматоры. Отдельно дана полная трактовка продвинутых методов оптимизации. Электронный архив на сайте издательства содержит коды всех примеров и более 300 цветных иллюстраций. |
BHV, Украина, барлық тауарлар
| Издательская компания BHV специализируется на публикации компьютерной и деловой литературы высокого качества. Наше издательство предлагает широкий ассортимент книг, охватывающий разнообразные темы и аспекты современных компьютерных технологий и бизнеса. Мы гордимся тем, что наши издания предоставляют ценную информацию и практические навыки как для начинающих, так и для опытных профессионалов. Большой опыт и экспертиза в индустрии позволяют нам выбирать только актуальные и интересные темы... |













































































































































%text%